Rat anterodorsal thalamic head direction neurons depend upon dynamic visual signals to select anchoring landmark cues.
نویسندگان
چکیده
Head direction cells, which are functionally coupled to 'place' cells of the hippocampus, a structure critically involved in spatial cognition, are likely neural substrates for the sense of direction. Here we studied the mechanism by which head direction cells are principally anchored to background visual cues [M.B. Zugaro et al. (2001) J. Neurosci., 21, RC154,1-5]. Anterodorsal thalamic head direction cells were recorded while the rat foraged on a small elevated platform in a 3-m diameter cylindrical enclosure. A large card was placed in the background, near the curtain, and a smaller card was placed in the foreground, near the platform. The cards were identically marked, proportionally dimensioned, subtended the same visual angles from the central vantage point and separated by 90 degrees. The rat was then disoriented in darkness, the cards were rotated by 90 degrees in opposite directions about the center and the rat was returned. Preferred directions followed either the background card, foreground card or midpoint between the two cards. In continuous lighting, preferred directions shifted to follow the background cue in most cases (30 of the 53 experiments, Batschelet V-test, P < 0.01). Stroboscopic illumination, which perturbs dynamic visual signals (e.g. motion parallax), blocked this selectivity. Head direction cells remained equally anchored to the background card, foreground card or configuration of the two cards (Watson test, P > 0.1). This shows that dynamic visual signals are critical in distinguishing typically more stable background cues which govern spatial neuronal responses and orientation behaviors.
منابع مشابه
Self-Organized Attractor Dynamics in the Developing Head Direction Circuit
Head direction (HD) cells are neurons found in an extended cortical and subcortical network that signal the orientation of an animal's head relative to its environment [1-3]. They are a fundamental component of the wider circuit of spatially responsive hippocampal formation neurons that make up the neural cognitive map of space [4]. During post-natal development, HD cells are the first among sp...
متن کاملPeak firing rates of rat anterodorsal thalamic head direction cells are higher during faster passive rotations.
Head direction cells discharge selectively when the head of the animal is oriented in a specific direction. The goal of this study was to determine how sensory signals arising from passive rotations (e.g., triggered by vestibular stimulation and dynamic visual inputs) influence the responses of anterodorsal thalamic head direction cells in the absence of voluntary movement cues (e.g., motor com...
متن کاملOptic flow stimuli update anterodorsal thalamus head direction neuronal activity in rats.
Head direction (HD) neurons fire selectively according to head orientation in the yaw plane relative to environmental landmark cues. Head movements provoke optic field flow signals that enter the vestibular nuclei, indicating head velocity, and hence angular displacements. To test whether optic field flow alone affects the directional firing of HD neurons, rats walked about on a circular platfo...
متن کاملThe Development of the Head Direction System before Eye Opening in the Rat
Head direction (HD) cells are neurons found in the hippocampal formation and connected areas that fire as a function of an animal's directional orientation relative to its environment. They integrate self-motion and environmental sensory information to update directional heading. Visual landmarks, in particular, exert strong control over the preferred direction of HD cell firing. The HD signal ...
متن کاملHead direction cells in rats with hippocampal or overlying neocortical lesions: evidence for impaired angular path integration.
Rodents use two distinct navigation strategies that are based on environmental cues (landmark navigation) or internal cues (path integration). Head direction (HD) cells are neurons that discharge when the animal points its head in a particular direction and are responsive to the same cues that support path integration and landmark navigation. Experiment 1 examined whether HD cells in rats with ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The European journal of neuroscience
دوره 20 2 شماره
صفحات -
تاریخ انتشار 2004